A Majorant Method For Non-Linear Partial Differential Equations
نویسندگان
چکیده
منابع مشابه
Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملDifferential transform method for solving linear and non-linear systems of partial differential equations
Article history: Received 9 May 2008 Received in revised form 18 June 2008 Accepted 6 October 2008 Available online 10 October 2008 Communicated by A.R. Bishop PACS: 02.60.Lj 02.60.Cb 02.30.Jr
متن کاملComputational technique of linear partial differential equations by reduced differential transform method
This paper presents a class of theoretical and iterative method for linear partial differential equations. An algorithm and analytical solution with a initial condition is obtained using the reduced differential transform method. In this technique, the solution is calculated in the form of a series with easily computable components. There test modeling problems from mathematical mechanic, physi...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملTHE ELZAKI HOMOTOPY PERTURBATION METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS
In this paper, Elzaki Homotopy Perturbation Method is employed for solving linear and nonlinear differential equations with a variable coffecient. This method is a combination of Elzaki transform and Homotopy Perturbation Method. The aim of using Elzaki transform is to overcome the deficiencies that mainly caused by unsatised conditions in some semi-analytical methods such as Homotopy Perturbat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1951
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.37.11.744